82	
Differentiating Powers Success Criteria	
Instruction	Examples
Identify a and n in the formula for each version of ax^n .	f(x) = 3 : a = 3, n=0 f(x) = 5x : a = 5, n=1 $f(x) = 7x^{3} : a = 7, n=3$ $f(x) = 5x^{-2} : a = 5, n=-2$
Multiply the values of a and n together to give you the new co-efficient to put before the <i>x</i> .	f(x) = 3 : a = 3, n=0 → 0 f(x) = 5x : a = 5, n=1 → 5 $f(x) = 7x^3 : a = 7, n=3 → 21$ $f(x) = 5x^{-2} : a = 5, n=-2 → -10$
Reduce the value of n by 1.	$f(x) = 3 \rightarrow f'(x) = 0$ $f(x) = 5x \rightarrow f'(x) = 5$ $f(x) = 7x^{3} \rightarrow f'(x) = 21x^{2}$ $f(x) = 5x^{-2} \rightarrow f'(x) = -10x^{-3}$
Repeat this for each term in the sequence using the formula:	$f(x) = 6x^3 + 4x^2 - 3x + 8$
The derivative of ax^n is anx^{n-1}	$\therefore f'(x) = 18x^2 + 4x - 3$
Apply the information you have found.	In the function: $f(x) = 6x^4 - 7x^2 + x - 4$ What is the gradient at $x = 9$?
First find the derivative.	$f'(x) = 24x^3 - 14x + 1$
Apply the value of x=9 to this function.	$f'(9) = 24(9)^3 - 14(9) + 1$ = 17,496 + 126 + 1 = 17,623

NOTE: The symbol for the derivative of x can take on three different forms: $\frac{dy}{dx}$, f'(x) or \dot{x} .

They all mean exactly the same thing.